Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genome-wide structural and evolutionary analysis of the P450 monooxygenase genes (P450ome) in the white rot fungus Phanerochaete chrysosporium: evidence for gene duplications and extensive gene clustering.

Identifieur interne : 000831 ( Main/Exploration ); précédent : 000830; suivant : 000832

Genome-wide structural and evolutionary analysis of the P450 monooxygenase genes (P450ome) in the white rot fungus Phanerochaete chrysosporium: evidence for gene duplications and extensive gene clustering.

Auteurs : Harshavardhan Doddapaneni [États-Unis] ; Ranajit Chakraborty ; Jagjit S. Yadav

Source :

RBID : pubmed:15955240

Descripteurs français

English descriptors

Abstract

BACKGROUND

Phanerochaete chrysosporium, the model white rot basidiomycetous fungus, has the extraordinary ability to mineralize (to CO2) lignin and detoxify a variety of chemical pollutants. Its cytochrome P450 monooxygenases have recently been implied in several of these biotransformations. Our initial P450 cloning efforts in P. chrysosporium and its subsequent whole genome sequencing have revealed an extraordinary P450 repertoire ("P450ome") containing at least 150 P450 genes with yet unknown function. In order to understand the functional diversity and the evolutionary mechanisms and significance of these hemeproteins, here we report a genome-wide structural and evolutionary analysis of the P450ome of this fungus.

RESULTS

Our analysis showed that P. chrysosporium P450ome could be classified into 12 families and 23 sub-families and is characterized by the presence of multigene families. A genome-level structural analysis revealed 16 organizationally homogeneous and heterogeneous clusters of tandem P450 genes. Analysis of our cloned cDNAs revealed structurally conserved characteristics (intron numbers and locations, and functional domains) among members of the two representative multigene P450 families CYP63 and CYP505 (P450foxy). Considering the unusually complex structural features of the P450 genes in this genome, including microexons (2-10 aa) and frequent small introns (45-55 bp), alternative splicing, as experimentally observed for CYP63, may be a more widespread event in the P450ome of this fungus. Clan-level phylogenetic comparison revealed that P. chrysosporium P450 families fall under 11 fungal clans and the majority of these multigene families appear to have evolved locally in this genome from their respective progenitor genes, as a result of extensive gene duplications and rearrangements.

CONCLUSION

P. chrysosporium P450ome, the largest known to date among fungi, is characterized by tandem gene clusters and multigene families. This enormous P450 gene diversity has evolved by extensive gene duplications and intragenomic recombinations of the progenitor genes presumably to meet the exceptionally high metabolic demand of this biodegradative group of basidiomycetous fungi in ecological niches. In this context, alternative splicing appears to further contribute to the evolution of functional diversity of the P450ome in this fungus. The evolved P450 diversity is consistent with the known vast biotransformation potential of P. chrysosporium. The presented analysis will help design future P450 functional studies to understand the underlying mechanisms of secondary metabolism and oxidative biotransformation pathways in this model white rot fungus.


DOI: 10.1186/1471-2164-6-92
PubMed: 15955240
PubMed Central: PMC1184071


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genome-wide structural and evolutionary analysis of the P450 monooxygenase genes (P450ome) in the white rot fungus Phanerochaete chrysosporium: evidence for gene duplications and extensive gene clustering.</title>
<author>
<name sortKey="Doddapaneni, Harshavardhan" sort="Doddapaneni, Harshavardhan" uniqKey="Doddapaneni H" first="Harshavardhan" last="Doddapaneni">Harshavardhan Doddapaneni</name>
<affiliation wicri:level="2">
<nlm:affiliation>Environmental Genetics and Molecular Toxicology Division, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA. d_harshavardhan@yahoo.co.in</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Environmental Genetics and Molecular Toxicology Division, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chakraborty, Ranajit" sort="Chakraborty, Ranajit" uniqKey="Chakraborty R" first="Ranajit" last="Chakraborty">Ranajit Chakraborty</name>
</author>
<author>
<name sortKey="Yadav, Jagjit S" sort="Yadav, Jagjit S" uniqKey="Yadav J" first="Jagjit S" last="Yadav">Jagjit S. Yadav</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:15955240</idno>
<idno type="pmid">15955240</idno>
<idno type="doi">10.1186/1471-2164-6-92</idno>
<idno type="pmc">PMC1184071</idno>
<idno type="wicri:Area/Main/Corpus">000837</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000837</idno>
<idno type="wicri:Area/Main/Curation">000837</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000837</idno>
<idno type="wicri:Area/Main/Exploration">000837</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genome-wide structural and evolutionary analysis of the P450 monooxygenase genes (P450ome) in the white rot fungus Phanerochaete chrysosporium: evidence for gene duplications and extensive gene clustering.</title>
<author>
<name sortKey="Doddapaneni, Harshavardhan" sort="Doddapaneni, Harshavardhan" uniqKey="Doddapaneni H" first="Harshavardhan" last="Doddapaneni">Harshavardhan Doddapaneni</name>
<affiliation wicri:level="2">
<nlm:affiliation>Environmental Genetics and Molecular Toxicology Division, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA. d_harshavardhan@yahoo.co.in</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Environmental Genetics and Molecular Toxicology Division, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chakraborty, Ranajit" sort="Chakraborty, Ranajit" uniqKey="Chakraborty R" first="Ranajit" last="Chakraborty">Ranajit Chakraborty</name>
</author>
<author>
<name sortKey="Yadav, Jagjit S" sort="Yadav, Jagjit S" uniqKey="Yadav J" first="Jagjit S" last="Yadav">Jagjit S. Yadav</name>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alternative Splicing (MeSH)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Cloning, Molecular (MeSH)</term>
<term>Cluster Analysis (MeSH)</term>
<term>Cytochrome P-450 Enzyme System (genetics)</term>
<term>DNA, Complementary (metabolism)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Gene Duplication (MeSH)</term>
<term>Genome, Fungal (MeSH)</term>
<term>Mixed Function Oxygenases (genetics)</term>
<term>Models, Genetic (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Multigene Family (MeSH)</term>
<term>Oxygen (metabolism)</term>
<term>Phanerochaete (genetics)</term>
<term>Phylogeny (MeSH)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN complémentaire (métabolisme)</term>
<term>Analyse de regroupements (MeSH)</term>
<term>Clonage moléculaire (MeSH)</term>
<term>Cytochrome P-450 enzyme system (génétique)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Duplication de gène (MeSH)</term>
<term>Famille multigénique (MeSH)</term>
<term>Génome fongique (MeSH)</term>
<term>Mixed function oxygenases (génétique)</term>
<term>Modèles génétiques (MeSH)</term>
<term>Oxygène (métabolisme)</term>
<term>Phanerochaete (génétique)</term>
<term>Phylogenèse (MeSH)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Structure tertiaire des protéines (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Épissage alternatif (MeSH)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Cytochrome P-450 Enzyme System</term>
<term>Mixed Function Oxygenases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>DNA, Complementary</term>
<term>Oxygen</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Cytochrome P-450 enzyme system</term>
<term>Mixed function oxygenases</term>
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ADN complémentaire</term>
<term>Oxygène</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Alternative Splicing</term>
<term>Amino Acid Sequence</term>
<term>Cloning, Molecular</term>
<term>Cluster Analysis</term>
<term>Evolution, Molecular</term>
<term>Gene Duplication</term>
<term>Genome, Fungal</term>
<term>Models, Genetic</term>
<term>Molecular Sequence Data</term>
<term>Multigene Family</term>
<term>Phylogeny</term>
<term>Protein Structure, Tertiary</term>
<term>Sequence Homology, Amino Acid</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de regroupements</term>
<term>Clonage moléculaire</term>
<term>Données de séquences moléculaires</term>
<term>Duplication de gène</term>
<term>Famille multigénique</term>
<term>Génome fongique</term>
<term>Modèles génétiques</term>
<term>Phylogenèse</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Structure tertiaire des protéines</term>
<term>Séquence d'acides aminés</term>
<term>Épissage alternatif</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Phanerochaete chrysosporium, the model white rot basidiomycetous fungus, has the extraordinary ability to mineralize (to CO2) lignin and detoxify a variety of chemical pollutants. Its cytochrome P450 monooxygenases have recently been implied in several of these biotransformations. Our initial P450 cloning efforts in P. chrysosporium and its subsequent whole genome sequencing have revealed an extraordinary P450 repertoire ("P450ome") containing at least 150 P450 genes with yet unknown function. In order to understand the functional diversity and the evolutionary mechanisms and significance of these hemeproteins, here we report a genome-wide structural and evolutionary analysis of the P450ome of this fungus.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Our analysis showed that P. chrysosporium P450ome could be classified into 12 families and 23 sub-families and is characterized by the presence of multigene families. A genome-level structural analysis revealed 16 organizationally homogeneous and heterogeneous clusters of tandem P450 genes. Analysis of our cloned cDNAs revealed structurally conserved characteristics (intron numbers and locations, and functional domains) among members of the two representative multigene P450 families CYP63 and CYP505 (P450foxy). Considering the unusually complex structural features of the P450 genes in this genome, including microexons (2-10 aa) and frequent small introns (45-55 bp), alternative splicing, as experimentally observed for CYP63, may be a more widespread event in the P450ome of this fungus. Clan-level phylogenetic comparison revealed that P. chrysosporium P450 families fall under 11 fungal clans and the majority of these multigene families appear to have evolved locally in this genome from their respective progenitor genes, as a result of extensive gene duplications and rearrangements.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>P. chrysosporium P450ome, the largest known to date among fungi, is characterized by tandem gene clusters and multigene families. This enormous P450 gene diversity has evolved by extensive gene duplications and intragenomic recombinations of the progenitor genes presumably to meet the exceptionally high metabolic demand of this biodegradative group of basidiomycetous fungi in ecological niches. In this context, alternative splicing appears to further contribute to the evolution of functional diversity of the P450ome in this fungus. The evolved P450 diversity is consistent with the known vast biotransformation potential of P. chrysosporium. The presented analysis will help design future P450 functional studies to understand the underlying mechanisms of secondary metabolism and oxidative biotransformation pathways in this model white rot fungus.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15955240</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>04</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<PubDate>
<Year>2005</Year>
<Month>Jun</Month>
<Day>14</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Genome-wide structural and evolutionary analysis of the P450 monooxygenase genes (P450ome) in the white rot fungus Phanerochaete chrysosporium: evidence for gene duplications and extensive gene clustering.</ArticleTitle>
<Pagination>
<MedlinePgn>92</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Phanerochaete chrysosporium, the model white rot basidiomycetous fungus, has the extraordinary ability to mineralize (to CO2) lignin and detoxify a variety of chemical pollutants. Its cytochrome P450 monooxygenases have recently been implied in several of these biotransformations. Our initial P450 cloning efforts in P. chrysosporium and its subsequent whole genome sequencing have revealed an extraordinary P450 repertoire ("P450ome") containing at least 150 P450 genes with yet unknown function. In order to understand the functional diversity and the evolutionary mechanisms and significance of these hemeproteins, here we report a genome-wide structural and evolutionary analysis of the P450ome of this fungus.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Our analysis showed that P. chrysosporium P450ome could be classified into 12 families and 23 sub-families and is characterized by the presence of multigene families. A genome-level structural analysis revealed 16 organizationally homogeneous and heterogeneous clusters of tandem P450 genes. Analysis of our cloned cDNAs revealed structurally conserved characteristics (intron numbers and locations, and functional domains) among members of the two representative multigene P450 families CYP63 and CYP505 (P450foxy). Considering the unusually complex structural features of the P450 genes in this genome, including microexons (2-10 aa) and frequent small introns (45-55 bp), alternative splicing, as experimentally observed for CYP63, may be a more widespread event in the P450ome of this fungus. Clan-level phylogenetic comparison revealed that P. chrysosporium P450 families fall under 11 fungal clans and the majority of these multigene families appear to have evolved locally in this genome from their respective progenitor genes, as a result of extensive gene duplications and rearrangements.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">P. chrysosporium P450ome, the largest known to date among fungi, is characterized by tandem gene clusters and multigene families. This enormous P450 gene diversity has evolved by extensive gene duplications and intragenomic recombinations of the progenitor genes presumably to meet the exceptionally high metabolic demand of this biodegradative group of basidiomycetous fungi in ecological niches. In this context, alternative splicing appears to further contribute to the evolution of functional diversity of the P450ome in this fungus. The evolved P450 diversity is consistent with the known vast biotransformation potential of P. chrysosporium. The presented analysis will help design future P450 functional studies to understand the underlying mechanisms of secondary metabolism and oxidative biotransformation pathways in this model white rot fungus.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Doddapaneni</LastName>
<ForeName>Harshavardhan</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Environmental Genetics and Molecular Toxicology Division, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA. d_harshavardhan@yahoo.co.in</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chakraborty</LastName>
<ForeName>Ranajit</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yadav</LastName>
<ForeName>Jagjit S</ForeName>
<Initials>JS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 ES010210</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01-ES10210</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2005</Year>
<Month>06</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018076">DNA, Complementary</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9035-51-2</RegistryNumber>
<NameOfSubstance UI="D003577">Cytochrome P-450 Enzyme System</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D006899">Mixed Function Oxygenases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>S88TT14065</RegistryNumber>
<NameOfSubstance UI="D010100">Oxygen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017398" MajorTopicYN="N">Alternative Splicing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003001" MajorTopicYN="N">Cloning, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016000" MajorTopicYN="N">Cluster Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003577" MajorTopicYN="N">Cytochrome P-450 Enzyme System</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018076" MajorTopicYN="N">DNA, Complementary</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="N">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020440" MajorTopicYN="Y">Gene Duplication</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016681" MajorTopicYN="Y">Genome, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006899" MajorTopicYN="N">Mixed Function Oxygenases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008957" MajorTopicYN="N">Models, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="N">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010100" MajorTopicYN="N">Oxygen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020075" MajorTopicYN="N">Phanerochaete</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2004</Year>
<Month>11</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2005</Year>
<Month>06</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>6</Month>
<Day>16</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>4</Month>
<Day>14</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>6</Month>
<Day>16</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15955240</ArticleId>
<ArticleId IdType="pii">1471-2164-6-92</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2164-6-92</ArticleId>
<ArticleId IdType="pmc">PMC1184071</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Gen Genet. 1999 Feb;261(1):133-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10071219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1998 Oct 5;220(1-2):45-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9767103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2004 Aug;150(Pt 8):2775-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15289573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Microbiol. 2005 Jun;50(6):292-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15968506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2000 Jan;37(1):65-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10672447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 1997 Apr 15;149(2):141-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9141655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacogenetics. 1996 Feb;6(1):1-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8845856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1995 Jul 22;248(1):95-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7651333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2004 Jun;22(6):695-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15122302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1997 May;10(4):427-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9150592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Cell Biol. 1995 Feb;14(2):163-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7865134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1418-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8643646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2003 Feb;38(1):10-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12553932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2003 Apr;61(2):83-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12655449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004;32(13):3977-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15292448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacogenetics. 2004 Jan;14(1):1-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15128046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2000 Oct 27;103(3):367-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11081623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1998 Nov;121(1-3):15-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9972448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Dec 15;275(50):39734-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10995755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1999 Jan 21;226(2):139-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9931473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jun;135(2):756-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15208422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 Jun 5;266(16):10632-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2037602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2000 Aug;30(3):167-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11035938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1996 May;8(5):887-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8672886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1999 Sep 1;369(1):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10462435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Eng. 1995 Aug;8(8):737-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8637843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 1997 Feb;21(1):17-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9073477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2001 Dec;17(12):1244-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11751241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1989 Mar 15;76(1):121-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2663647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 1987;41:465-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3318677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1998 Oct 9;251(1):244-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9790939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 Jul 5;264(19):10987-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2544578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2004 Oct;65(5):559-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15378295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2000 Sep 15;16(12):1077-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10953079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1996 Feb 22;169(1):105-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8635732</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Ohio</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Chakraborty, Ranajit" sort="Chakraborty, Ranajit" uniqKey="Chakraborty R" first="Ranajit" last="Chakraborty">Ranajit Chakraborty</name>
<name sortKey="Yadav, Jagjit S" sort="Yadav, Jagjit S" uniqKey="Yadav J" first="Jagjit S" last="Yadav">Jagjit S. Yadav</name>
</noCountry>
<country name="États-Unis">
<region name="Ohio">
<name sortKey="Doddapaneni, Harshavardhan" sort="Doddapaneni, Harshavardhan" uniqKey="Doddapaneni H" first="Harshavardhan" last="Doddapaneni">Harshavardhan Doddapaneni</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000831 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000831 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:15955240
   |texte=   Genome-wide structural and evolutionary analysis of the P450 monooxygenase genes (P450ome) in the white rot fungus Phanerochaete chrysosporium: evidence for gene duplications and extensive gene clustering.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:15955240" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020